Plant Cell 2002,14(6):1329–1345 PubMedCrossRef 69 Tian M, Benede

Plant Cell 2002,14(6):1329–1345.PubMedCrossRef 69. Tian M, Benedetti B, Kamoun S: A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiol 2005,138(3):1785–1793.PubMedCrossRef Selumetinib chemical structure 70. Tian M, Huitema E, Da Cunha L, Torto-Alalibo T, Kamoun S: A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans

targets the tomato pathogenesis-related protease P69B. J Biol Chem 2004,279(25):26370–26377.PubMedCrossRef 71. DebRoy S, Thilmony R, Kwack YB, Nomura K, He SY: A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants.

Proc Natl Acad Sci USA 2004,101(26):9927–9932.PubMedCrossRef 72. Hauck P, Thilmony R, He SY: A Pseudomonas syringae type III Entospletinib order effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc Natl Acad Sci USA 2003,100(14):8577–8582.PubMedCrossRef 73. Boureau T, ElMaarouf-Bouteau H, Garnier A, Brisset MN, Perino C, Pucheu I, Barny MA: DspA/E, a type III effector essential Evofosfamide supplier for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants. Mol Plant Microbe Interact 2006,19(1):16–24.PubMedCrossRef 74. Sohn KH, Lei R, Nemri A, Jones JD: The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. Plant Cell 2007,19(12):4077–4090.PubMedCrossRef 75. He P, Chintamanani S, Chen Z, Zhu L, Kunkel BN, Alfano JR, Tang X, many Zhou JM: Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J 2004,37(4):589–602.PubMedCrossRef 76. Brooks DM, Bender CL, Kunkel BN: The Pseudomonas

syringae phytotoxin coronatine promotes virulence by overcoming salicylic-acid-dependent defences in Arabidopsis thaliana. Mol Plant Pathol 2005, 6:629–639.PubMedCrossRef 77. Doyle EA, Lambert KN:Meloidogyne javanica chorismate mutase 1 alters plant cell development. Mol Plant Microbe Interact 2003,16(2):123–131.PubMedCrossRef 78. Sijmons PC, Atkinson HJ, Wyss U: Parasitic strategies of root nematodes and associated host cell responses. Annu Rev Phytopathol 1994, 32:235–239.CrossRef 79. Gohre V, Robatzek S: Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 2008, 46:189–215.PubMedCrossRef 80. Semblat JP, Rosso MN, Hussey RS, Abad P, Castagnone-Sereno P: Molecular cloning of a cDNA encoding an amphid-secreted putative avirulence protein from the root-knot nematode Meloidogyne incognita. Mol Plant Microbe Interact 2001,14(1):72–79.PubMedCrossRef 81. Gleason CA, Liu QL, Williamson VM: Silencing a candidate nematode effector gene corresponding to the tomato resistance gene Mi-1 leads to acquisition of virulence.

The bias V depends on the built-in potential V bi, externally app

The bias V depends on the built-in potential V bi, externally applied voltage V ext, and kT/e. As shown in Figure 6, the narrowing

of surface depletion region, which would facilitate the electrons to transport to the surface, also contribute to the improvement of the photocatalytic performance. Figure selleck chemicals 6 The schematic of the surface band bending of ZnO NWs. The energy bands bend upwards as they approach the surface due to the formation of the built-in electric field near the surface, finally results in a surface depletion region and electron–hole separation. Doping of In increases the electron concentration and reduces the width of surface depletion region W, which facilitates the electrons to transport to the surface. Conclusions In summary, the morphology, microstructure, and PL properties of In-doped ZnO NWs prepared by vapor transport deposition method were investigated. The nanowires exhibit switches of the orientation from [10 0] to an infrequent [02 3] direction and the surface from smooth to ripple-like with increasing check details In doping content. The ZnO NWs with In content of 1.4 at.% have large

surface-to-volume ratio with lateral surfaces formed by (10 0) and (10 1) facets. Low-temperature PL shows two dominant emissions at 3.357 and 3.31 eV, indicative of the formation of InZn donors and stacking faults, respectively. The In-doped ZnO NWs do not show surface exciton emission, which indicates a low density of surface electron traps in our samples. We demonstrate that ZnO NWs with large surface-to-volume ratio, high electron heptaminol concentration, and low-surface trap density can be achieved simply by In doping, which are desirable for efficient photocatalysis. Acknowledgements This work was financially supported by the Natural Science Foundation of China under Grant nos. MK-2206 in vitro 51172204

and 51372223, Science and Technology Department of Zhejiang Province Project no. 2010R50020. References 1. Li JM, Dai LG, Wan XP, Zeng XL: An “edge to edge” jigsaw-puzzle two-dimensional vapor-phase transport growth of high-quality large-area wurtzite-type ZnO (0001) nanohexagons. Appl Phys Lett 2012, 101:173105.CrossRef 2. Luo JT, Zhu XY, Chen G, Zeng F, Pan F: Influence of the Mn concentration on the electromechanical response d(33) of Mn-doped ZnO films. Phys Stat Sol (RRL) 2010, 4:209.CrossRef 3. Tian ZRR, Voigt JA, Liu J, McKenzie B, McDermott MJ, Rodriguez MA, Konishi H, Xu HF: Complex and oriented ZnO nanostructures. Nat Mater 2003, 2:821.CrossRef 4. He HP, Tang HP, Ye ZZ, Zhu LP, Zhao BH, Wang L, Li XH: Temperature-dependent photoluminescence of quasialigned Al-doped ZnO nanorods. Appl Phys Lett 2007, 90:023104.