gingivalis, one of the systems of heme acquisition consists of Hm

gingivalis, one of the systems of heme acquisition consists of HmuR and HmuY proteins [12]. HmuR is an outer-membrane TonB-dependent receptor involved in heme transport through the outer membrane [13–16], whereas HmuY is a heme-binding lipoprotein associated with the outer membrane of the Selleck Seliciclib bacterial cell [17–21]. A detailed characterization of the HmuY-heme complex demonstrated that heme, with a midpoint potential of 136 mV, is in a low-spin Fe(III)

hexa-coordinate environment [20]. In that report we also identified histidines 134 and 166 as potential heme ligands. Recent crystallographic analysis of the HmuY-heme complex confirmed these data and showed that the protein exhibits a unique structure composed of an all-β fold [21]. Our studies also showed that HmuY may be functional in the form of dimers/tetramers [19, 21]. It seems that dimeric HmuY takes up heme and this leads to tetramerization under occlusion of the heme binding sites. Tetrameric HmuY would protect heme from host scavengers and delivered it to HmuR. On the basis of our mutational analysis of HmuY heme ligands [20], an initial step in H 89 manufacturer heme transfer could involve disruption of only one of the two axial histidine ligands, as found for Serratia marcescens hemophore HasA [22]. Once bound by HmuR, heme is translocated across the outer membrane into the periplasm with the assistance of TonB and further heme transport

requires the presence of binding proteins to escort it across the periplasm to the cytoplasm. This step might be performed by other hmu operon proteins, so far not characterized [17, 19]. HmuY, especially in the form associated with the outer membrane, may also store heme and protect the bacterial cell from damage induced by free hemin. It is likely that HmuY lipoprotein may play a role not only in heme acquisition, but also in the host pathogen response. mafosfamide Therefore the aim of this study was to analyze the surface exposure and expression of HmuY protein in P. gingivalis. In addition, in this report we examined the participation of HmuY protein in biofilm formation. Results and Discussion HmuY is a unique P. gingivalis protein Preliminary studies demonstrated that HmuY

shows high identity to proteins identified in several P. gingivalis strains [17, 19]. Here we compared the amino-acid sequences of putative HmuY homologues deposited in databases. Interestingly, we found that HmuY is similar to proteins encoded in several different species belonging to the Bacteroidetes phylum, which consists of three classes: Bacteroidetes, Flavobacteria, and Sphingobacteria [23]. The Bacteroidetes class consists of anaerobes which are often found in high numbers in the intestinal tracts of animals and which may infect different human tissues, including periodontal tissues (see Additional file 1). Members of the other two classes are mainly aerobic and abundant in many freshwater and marine systems (data not shown).

05) in solid culture condition (Table 4) The expression of sever

05) in solid culture condition (Table 4). The expression of several genes which including those for a levanase (PINA0149), an extracytoplasmic function (ECF)-subfamily sigma factor (putative σE: PINA0299), a putative lipoprotein (PINA1510), and a putative polysialic acid transport protein (KpsD, PINA1911) were protruded. Among hypothetical proteins, PINA1526 (putative CpxP) showed extremely high levels of transcription. Table 4 Genes showing at least four-fold higher expression levels

in biofilm-forming Prevotella intermedia strain 17 than those of strain 17 in planktonic condition Gene Fold change Annotation PIN0036 4.67 Hypothetical protein PINA0141 6.78 Lipoprotein, putative PINA0149 12.45 Levanase, ScrL PINA0150 6.76 Levanase, SacC PINA0151 4.71 Glucose-galactose transporter, putative PINA0152 4.80 Fructokinase PINA0194 4.02 Outer membrane protein www.selleckchem.com/products/gsk2126458.html ABT-263 ic50 PINA0298 10.42 Hypothetical protein PINA0299 9.16 ECF-subfamily sigma factor (σE, putative) PINA0300 5.62 Hypothetical protein PINA0612 7.21 Hypothetical protein PINA0990 4.24 Fibronectin type III domain protein PINA1157 10.88 Hypothetical protein PINA1452 4.24 Ribose-5-phosphate isomerase B PINA1494 9.65 Hemin receptor, putative PINA1510 18.41 Lipoprotein, putative PINA1525 16.93 Hypothetical protein PINA1526 28.60 Hypothetical protein with LTXXQ motif (CpxP, putative) PINA1665 5.84 Hypothetical protein PINA1807 7.24 Cell surface protein PINA1833

4.16 AraC family transcriptional regulator PINA1911 10.24 Polysialic acid transport protein, KpsD PINA1931 4.06 Alkyl hydroperoxide reductase, subunit C, AhpC PINA2066 8.94 Dps protein PINA2119 4.99 Agmatinase, SpeC Discussion It is well known that bacteria assuming biofilm-forming

capaCity have enormous advantages in establishing persistent infections even though they appear to be innocuous in their planktonic State [18–20]. Exopolysaccharide (EPS) is one of the main constituents of the biofilm extracellular matrix [21], and recent investigations have revealed that each biofilm-forming bacterium produces distinctive EPS components e.g. alginate Loperamide and/or Psl found in Pseudomonas aeruginosa [22], acidic polysaccharide of Burkholderia cepacia [23], collanic acid, poly-β-1,6-GlcNAc (PGA) or cellulose found in Escherichia coli [24–27], cellulose of Salmonella [24, 28], amorphous EPS containing N-acetylglucosamine (GlcNAc), D-mannose, 6-deoxy-D-galactose and D-galactose of Vibrio cholerae [29], polysaccharide intercellular adhesin (PIA) of Staphylococcus [30], and glucose and mannose rich components found in Bacillus subtilis biofilm [31]. In this study we found that P. intermedia strain 17 produced a large amount of EPS, with mannose constituting more than 80% of the polysaccharides. Among oral bacteria, the production of mannose-rich polysaccharide by Capnocytophaga ochracea has been reported [32]. This EPS provides a protection from attack by the human innate immune system [33].

However, this factor should be insignificant as it was found that

However, this factor should be insignificant as it was found that for smaller holes, the PDMS formed only very shallow bumps, so it did not fill the hole and thus the trapped air was not compressed. Moreover, the vacuum level (between 0.01 MPa and 10 Pa) was found unimportant for PDMS filling, though

it affected the mechanical properties of the filled PDMS since the PDMS cured at poor vacuum was less dense due to trapped air and solvent molecule [16]. That is, the air at the dead end would dissolve in PDMS rather than get compressed since PDMS is air permeable.   3) Composition of the Sylgard 184 and Veliparib its curing agent, which contains many additives. One important additive is silica nanoparticle filler for reinforcing purpose [17, 18], which may block the hole when its size is not negligible compared to the hole diameter.   4) Size effect. The above derivation for capillary filling speed applies to large channels. For nanoscale holes, the filling mechanism is much more complicated. For example, the surface energy can differ significantly from macro-scale surface when the liquid pillar diameter is no longer orders larger than the range of van de Waals force, and the meniscus may be ‘pinned’ due to the abrupt change of surface topography or charges. In addition, at nanoscale, highly viscous fluid usually behaves like non-Newtonian fluid with much higher effective viscosity. Molecular

dynamic simulation can be employed to better understand the PDMS filling mechanism.   Our selleck compound current study only serves to suggest Urease alternative roles of solvent in PDMS filling, and it cannot identify which factors play the most critical role in filling nanoscale

holes. Systematic further study is needed to unambiguously elucidate the role of solvent for the hole filling by diluted PDMS, and why sub-100-nm holes are so difficult to fill. For instance, in order to focus on the effect of viscosity, pure PDMS with different molecular weights, thus very different viscosities, must be used to fill open-ended holes and examined in its liquid state (without curing). This will be studied and published elsewhere. From the point of view of practical application, PDMS filling into nanoscale holes can be improved by solvent dilution, surface treatment by solvent or surfactant other than FOTS such that the surface energy is just low enough for clean demolding, vacuum to drive off solvent and assure PDMS’s mechanical property, and applied pressure that is the most effective approach [4]. Conclusions We, here, studied the effect of solvent treatment of the master mold surface (that was already coated with a silane anti-adhesion monolayer) on PDMS filling into nanoscale holes on the master mold. We achieved improved filling into holes with diameter down to sub-200 nm versus approximately 300 nm for master mold without this additional solvent surface treatment using toluene or hexane.