Published by Elsevier Ltd All rights reserved “
“Managing r

Published by Elsevier Ltd. All rights reserved.”
“Managing risks to human health and the environment produced by endocrine-active chemicals (EAC) is dependent on sound principles of risk assessment and risk management, which need to be adapted to address the uncertainties in the state of the science of EAC. Quantifying EAC hazard identification, mechanisms of action, and dose-response curves is complicated by a range of chemical structure/toxicology classes, receptors and receptor subtypes, and nonlinear dose-response curves with low-dose effects. Advances in risk

science including toxicogenomics and quantitative structure-activity relationships (QSAR) along with a return to the biological check details process of hormesis are proposed to complement existing risk assessment strategies,

SBE-��-CD cell line including that of the Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC 1998). EAC represents a policy issue that has captured the public’s fears and concerns about environmental health. This overview describes the process of EAC risk assessment and risk management in the context of traditional risk management frameworks, with emphasis on the National Research Council Framework (1983), taking into consideration the strategies for EAC management in Canada, the United States, and the European Union.”
“Numerous studies have documented the consequences of exposure to anesthesia in models of term and post-term infants, evaluating the incidence of cell loss, physiological alterations and cognitive dysfunction. However, surprisingly few studies have investigated the effect of anesthetic exposure on outcomes in newborn rodents, the developmental equivalent of premature human infants. This is critical given that one out of every eight babies born in the United States is premature, very with an increased prevalence of surgical procedures required in these individuals. Also, no studies have investigated if the genetic sex of the individual influences the response to neonatal anesthesia. Using the newborn rat as the developmental

equivalent of the premature human, we documented the effect of a single bout of exposure to either the inhalant isoflurane or the injectable barbiturate phenobarbital on hippocampal anatomy, hippocampal dependent behavioral performance and normal developmental endpoints in male and female rats. While both forms of anesthesia led to significant decrements in cognitive abilities, along with a significant reduction in volume and neuron number in the hippocampus in adulthood, the decrements were significantly greater in males than in females. Interestingly, the deleterious effects of anesthesia were manifest on developmental measures including surface righting and forelimb grasp, but were not evident on basic physiological parameters including body weight or suckling. These findings point to the hazardous effects of exposure to anesthesia on the developing CNS and the particular sensitivity of males to deficits. (c) 2008 IBRO.

Comments are closed.