After that, the animals were euthanized to determine the attachment and viability of endometrial explants. Also, from each experimental group, tissue samples of eutopic endometrium were obtained for establishing the control group. The surface area of the explants was measured (length × width) to the nearest 0,1 millimeter using calipers. After dissection, each sample was immediately divided into two pieces. One piece was fixed in 10% buffered formalin and embedded in paraffin for histological and immunohistochemical studies. The other piece was frozen in liquid nitrogen for RNA extraction. Histology
and Immunohistochemistry Formalin-fixed tissues were paraffin-embedded and PI3 kinase pathway cut into 4-μm-thick sections. Part of the sections were stained with Harris’ hematoxylin and eosin, and examined microscopically for the presence of histological hallmarks of endometriosis, such as endometrial glands and stroma. The other paraffin-embedded tissue sections were placed on silane-treated slides, and maintained at room temperature. After dewaxing, the sections were treated with a solution of 3% H2O2 in 0.01 mol/L phosphate-buffer saline (PBS), pH 7.5, to inhibit endogenous CHIR-99021 peroxidase activity. The slides were then immersed in 10 nmol/L citrate buffer
{Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| (pH 6.0) and heated in a microwave oven for 5 minutes to retrieve masked antigens; to reduce nonspecific antibody binding; the sections were then incubated with PBS containing a 10% solution of normal goat serum and 5% bovine serum albumin for 30 minutes. Sections were incubated with the following antibodies: polyclonal antibody against von Willebrand-factor (vWF) A-082 (DakoCytomation, Carpinteria, CA) at 1:200 dilution, monoclonal antibody against α-smooth muscle actin (α-SMA) M0851 (DakoCytomation, Carpinteria, CA) at 1:100 dilution, monoclonal antibody against VEGF SC-7269 (Santa Cruz Biotechnology, Santa Cruz, CA) at 1:100 dilution, polyclonal antibody against VEGFR-2 (Flk-1) SC-6251 (Santa Cruz Biotechnology,
Santa Cruz, CA) at 1:200 dilution, and monoclonal antibody against ED-1 macrophage antigen AB31630 (Abcam, Cambridge, MA) at 1:200 dilution. Incubations were carried out overnight and then revealed using LSAB2 Kit, HRP, rat (Dako-Cytomation, Carpinteria, CA) with diaminobenzidine ROCK inhibitor (3,3′-diaminobenzidine tablets; Sigma, St. Louis, MO) as the chromogen and counterstained with hematoxylin. For each case, negative control slides consisted of sections incubated with antibody vehicle or no immune rabbit or mouse serum. Histomorphometry All tissues were examined by two blinded observers using a 40× objective lens of a light microscope (Nikon, Tokyo, Japan) connected to a digital camera (Coolpix 990; Nikon). Ten fields of an immunostained section (von Willebrand-factor, α-SMA, VEGF, Flk-1 and ED-1) were chosen at random and captured from each specimen.