We tested the potency and efficacy of RepliVAX D2 2 in a well-des

We tested the potency and efficacy of RepliVAX D2.2 in a well-described immunodeficient mouse model for dengue (strain AG129; lacking the receptors for both type I and type II interferons). These mice produced dose-dependent DENV2-neutralizing antibody responses when vaccinated with RepliVAX D2.2. When challenged with 240 50% lethal doses of DENV2,

mice given a single inoculation of RepliVAX D2.2 survived significantly longer than sham-vaccinated animals, although some of these severely immunocompromised mice eventually died from the challenge. Taken together these studies indicate that the RepliVAX technology shows promise for use in the development of vaccines that can be used to prevent dengue.”
“Male and female zebra finches are highly social and form pair bonds typically associated with reproduction. To determine how these bonds affect a female’s behavioral response selleckchem to future interactions, females were paired with a male for 2 weeks, separated for 48 h, and then exposed to the same or a novel male. Control females were left unpaired and introduced to a novel male. Behaviors, as well as neural ZENK expression, were quantified. Females displayed higher levels of behaviors associated with pair bonds (clumping and preening) toward their mates than novel males, and display of these behaviors was correlated

with expression of the immediate early gene ZENK CCI-779 in vivo in the nucleus taeniae of one group of females, Vasopressin Receptor those interacting with their mates. Behaviors of the stimulus males were largely unaffected, but those interacting with an unpaired female attempted to mount more than those interacting with their mates. The results indicate that the nucleus taeniae may play some role in the maintenance of pair bonds in this species. Additionally, females

may provide some signal to influence elements of the behavior of males. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.”
“The innate immune system guards against virus infection through a variety of mechanisms including mobilization of the host interferon system, which attacks viral products mainly at a posttranscriptional level. The influenza virus NS1 protein is a multifunctional facilitator of virus replication, one of whose actions is to antagonize the interferon response. Since NS1 is required for efficient virus replication, it was reasoned that chemical inhibitors of this protein could be used to further understand virus-host interactions and also serve as potential new antiviral agents. A yeast-based assay was developed to identify compounds that phenotypically suppress NS1 function. Several such compounds exhibited significant activity specifically against influenza A virus in cell culture but had no effect on the replication of another RNA virus, respiratory syncytial virus.

Comments are closed.