This absorption spectrum allows the identification of the gas and

This absorption spectrum allows the identification of the gas and, at the same time, contains information about its concentration. Hence, spectroscopic-based gas-sensing systems are attractive for gas detection as they provide high spectral resolution, gas selectivity, precise identification of gas species and possibility of remote measurements [3]. Furthermore, the ability to use optical fibre waveguides as gas cells in spectroscopic-based sensors opens up the possibility to very long interaction lengths with the gas, thus (assuming the transmission loss is low) to very high sensitivity. Moreover, fibres offer additional advantages such as compact size, light weight, very small volume samples, possibility of distributed measurements and better integrability in optical systems.

Until recently, systems based on conventional all-solid fibres showed a very poor performance [4]. In contrast, the advent of Hollow-Core Photonic Bandgap Fibres (HC-PBFs) has provided a more efficient platform to exploit the light-gas interaction [5].HC-PBFs are a new class of optical fibres in which light is guided by virtue of a periodic array of micro-sized holes, i.e. a microstructure, running down the full fibre length. Such array of holes gives rise to an optical bandgap, i.e. an interval of wavelengths or frequency range where light cannot propagate through the microstructure. When an oversized air hole is introduced in the centre of the microstructure, a defect is created allowing the propagation of light. This central air hole forms the core of the fibre where light is trapped by the photonic bandgap determined by the cladding [5, 6].

HC-PBFs have unique properties that make them particularly suitable for gas sensing. When the hollow core of the fibre is filled with gas, very long interaction lengths between light and the gas confined in the core can be achieved, enabling high sensitivity measurements. Furthermore, HC-PBFs are also interesting for their possibilities of integrability in optical systems and compactness. For the aforementioned reasons, in the past few years gas-filled HC-PBFs have been widely investigated in applications such as gas detection [7, 8], high-resolution spectroscopy experiments [9, 10], wavelength locking [11] and nonlinear-optics [12].The long pathlengths provided by HC-PBFs are particularly advantageous Dacomitinib for monitoring weakly absorbing gases.

Specifically, this work focuses on the detection of methane band ��2 + 2��3, at 1.3 ��m. This region is of great interest as it is used as a telecommunication band. Therefore, it benefits from the fully-developed and low-cost telecommunication light sources and detectors available in this wavelength range. However, due to the weakly absorbing lines of this band, it is very difficult to detect with conventional gas cells. Traditionally, bulky gas cells have been needed to reach a good sensitivity [13].

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>