The Treg percentages were significantly higher in all the experim

The Treg percentages were significantly higher in all the experiment groups compared to the control groups. These changes were deduced by applying TGF-β1 neutralizing antibody into the co-culture system. Our results indicated that the

CD4+ T cells can be induced into CD4+CD25+FoxP3+ T cells by BMMCs via TGF-β1. Regulatory T cells (Tregs) can suppress immune responses to donor alloantigens, and have the potential to play an important role in both inducing and maintaining transplant tolerance in vivo[1]. The transcription factor forkhead box P3 (FoxP3) is the recognized master gene governing the development and function of both natural and induced Tregs, especially in mice [2–4]. Mast cells (MCs) have long been recognized as major players in allergy [5], but see more in recent years MCs have been identified as being responsible for a far more complex range of functions in the innate and adaptive immune responses [6–9]. However, the role of mast cells JQ1 manufacturer in the generation of adaptive immune responses, especially in transplant immune responses, is far from being resolved [10]. Recently,

Lu et al. found that mast cells may be essential intermediaries in Treg-mediated transplant tolerance [11]. While the mechanisms involved are still not well understood, some previous studies have shown that MCs can serve as a source of transforming growth factor (TGF)-β1 [12], which is required for introduction and maintenance of Treg cells both in vitro and in vivo[13–16]. Therefore, this study was designed to test the hypothesis that bone marrow-derived mast cells (BMMCs) can induce CD4+ T cells to CD4+CD25+FoxP3+ Tregs via TGF-β1 HSP90 in vitro. C57BL/6 (H-2b) mice were maintained and housed at the animal facilities of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Bone marrow cells were obtained from C57BL/6 mice. The cells were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS), 10 mM Hepes, 50 µM 2-mercaptoethanol, penicillin/streptomycin/L-glutamine, 10 ng/ml mouse interleukin (IL)-3 (Peprotech, Rocky Hill, NJ, USA) and

10 ng/ml mouse stem cell factor (SCF) (Peprotech) at 37°C in a humidified atmosphere containing 5% CO2. Every 7 days, the non-adherent cells were transferred into fresh enriched medium. After 4 weeks, the purity of the mast cells was assessed by flow cytometry. Spleen cells were obtained from C57BL/6 mice. T cells were isolated from the spleen cells with CD3 T cell isolation kit (Miltenyi, Bergisch Gladbach, Germany). Purity of CD3+ T cells typically exceeded 95%. To determine the purity and the characteristic of BMMCs, BMMCs were collected after 4 weeks’ culture. They were dropped onto a slide and stained with toluidine blue (1%, pH = 1) for 10–20 s. The slide was then washed with distilled water for about 2 min. The cells were observed under a microscope.

Comments are closed.