The three most well-studied components of the nitrogen regulatory

The three most well-studied components of the nitrogen regulatory circuit that commonly impact fungal pathogenesis are the ammonium permeases (the nitrogen availability sensor candidate), ureases (a nitrogen-scavenging enzyme) and GATA transcription factors (global regulators of nitrogen catabolism). In certain species, the ammonium permease induces a morphological switch from yeast to invasive filamentous growth forms or infectious spores, while in others, urease is a bona fide virulence factor. In all species studied thus far, transcription of the ammonium permease and urease-encoding genes is modulated by GATA factors. Fungal pathogens

therefore integrate the expression of different virulence-associated OSI-744 price phenotypes into the regulatory network controlling nitrogen catabolism. “
“Bacteria have the exquisite ability to maintain a precise diameter, cell length, and shape. The dimensions of bacteria size and shape are a classical metric in the distinction of bacterial species. Much of what we know about

the particular morphology of any given species is the result of investigations of planktonic cultures. As we explore http://www.selleckchem.com/products/ldk378.html deeper into the natural habitats of bacteria, it is increasingly clear that bacteria can alter their morphology in response to the environment in which they reside. Specific morphologies are also becoming recognized as advantageous for survival in hostile environments. This is of particular importance in the context of both colonization and infection in the host. There are multiple examples of bacterial pathogens that use morphological changes as a mechanism for evasion of host immune responses and continued persistence. This review will focus on two systems where specific morphological changes are essential for persistence in animal models of human disease. We will also offer insight into the mechanism underlying the morphological changes and how these morphotypes aid in persistence. Additional examples of morphological changes associated with survival will be presented. “
“The Tat pathway is

a common protein translocation system that is found in the bacterial cytoplasmic membrane, as well as in the cyanobacterial and plant thylakoid membranes. It is unusual in that the Tat pathway transports mafosfamide fully folded, often metal cofactor-containing proteins across these membranes. In bacteria, the Tat pathway plays an important role in the biosynthesis of noncytoplasmic metalloproteins. By compartmentalizing protein folding to the cytoplasm, the potentially aberrant binding of non-native metal ions to periplasmic proteins is avoided. To date, most of our understanding of Tat function has been obtained from studies using Escherichia coli as a model organism but cyanobacteria have an extra layer of complexity with proteins targeted to both the cytoplasmic and thylakoid membranes. We examine our current understanding of the Tat pathway in cyanobacteria and its role in metalloprotein biosynthesis.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>