The likely mechanisms behind the increased power output we measur

The likely mechanisms behind the increased power output we measured are related to methylation

and osmolyte effects. Selleckchem Fludarabine betaine supplementation may have elevated intramuscular creatine stores, increased muscle growth, or protected the muscle cells from stress-induced damage. The creatine hypothesis is attractive and supported by studies on betaine metabolism. In short, the liver enzyme betaine homocysteine methyltransferase transfers a methyl group from betaine to homocysteine, thereby producing dimethylglycine and methionine. The latter is LY3039478 purchase then converted to S-adenosylmethionine (SAM), which subsequently acts as a methyl donor during creatine synthesis [17]. Studies show that betaine ingestion increases serum methionine, while betaine injection increases red blood cell SAM concentrations

[18, 19]. Our observed changes in sprint performance, moreover, are consistent with the performance effects of creatine supplementation, as shown in a meta-analysis [20]. Across 100 studies, creatine supplementation improved performance parameters by 5.7 ± 0.5% compared to baseline, whereas corresponding placebo effects were 2.4 ± 0.4%. More specifically, Thiazovivin cell line the meta-analysis showed that creatine supplementation improved lower extremity power by 5.6 ± 0.6% relative to baseline, which is similar to the 5.5 ± 0.8% increase we measured. It is unlikely, however, that the amount of betaine consumed by our subjects (2.5 g.d-1 for 7 d) elicits the same effect as the typical daily dosage of creatine during the loading phase of approximately 25 grams. This conjecture is supported by recently published data showing that 2 g.d-1 of betaine for 10 day did not increase phosphorylcreatine levels compared to 20 g.d-1 of creatine for 10 day [21]. This study also showed that betaine supplementation did not increase squat and bench press 1 RM or bench and squat power, findings that are inconsistent with data from earlier studies [10–12]. Direct comparison among the studies is difficult. Betaine dosage was lower in the recent study

(2 vs 2.5 g.d-1), supplementation time was shorter (10 vs 15 d) and power output was not assessed until 3-5 d after supplementation ended compared to Reverse transcriptase immediately afterwards [10, 11]. Last, betaine supplementation may have enhanced sprint performance by acting as an osmolyte to maintain cell hydration and function under stress more effectively than placebo. Organic osmolytes are accumulated in cells when tissues are subjected to stress [6, 22]. They help cells maintain optimal osmotic pressure, and allow proteins to maintain native folded conformation and stability without perturbing other cellular processes. Betaine helps maintain cell homeostasis by preventing formation of stress granules and keeping the mRNA associated machineries going under chronic hypertonicity [23].

Comments are closed.