The average sequence identity was 97 5% A total of 16,029 sequen

The average sequence identity was 97.5%. A total of 16,029 sequences BIX 1294 mw had identity below 97% suggesting they represented uncharacterized bacteria. The majority

of these unknown organisms were most closely related based upon 16S sequence to Bacterioides, Paludibacter, Pseudomonas, Finegoldia, and Corynebacterium spp. These bacteria, which can be considered unknown or previously uncharacterized bacterial species, were identified based upon their closest identification and ranked at the genus, family or order level as appropriate. Only 101 of the total number of analyzed sequences fell below 80% identity and were not considered in subsequent analyses. A total of 62 different genera (occurring in at least 2 of the wounds) were identified among the 40 wounds indicating a large relative diversity. The top 25 unique and most ubiquitous species (or closest taxonomic designation) are indicated in Table 1. The most ubiquitous genera were, in order and unknown Bacteroides, Staphylococcus aureus, and Corynebacterium spp The Bacteroides was only of marginal identity to any known Bacteroides species, thus represents a previously uncharacterized type of wound bacteria. Several genera

were found in high percentage in individual wounds (Figure Smoothened inhibitor 1 dendogram). Staphylococcus spp. (which included primarily S. aureus but also several other coagulase negative species) predominated in 11 of the wounds, the unknown Bacteroidetes (which may represent a new genus based upon their identity) Bay 11-7085 predominated in 8 of the wounds, Serratia (tenatively marcescens) was a predominant

population in 6 of the wounds, Streptococcus, Finegoldia, Corynebacterium and Peptoniphilus spp. were the predominant genera in 2 wounds each, while Proteus and Pseudomonas spp. were the major population in one wound each. The remaining wounds were highly diverse with no overwhelmingly predominant populations. It is interesting that so many of these wounds were predominated by what are likely strict anaerobic bacteria with only very minor populations of facultative or strict aerobes. This suggests that such anaerobes might be contributing to the etiology of such biofilm infections. Figure 1 indicates there are a number of important functional equivalent pathogroups [9] associated with VLU. At a relative distance of 5 based upon the weighted-pair linkage and Manhattan distance we note there are 11 total clusters, which included 4 predominant clusters representing possible pathogroups [9]. It is also evident that Staphylococcus, Serratia, and Bacterioides are the defining variables for 3 of these 4 clusters. From this data we note that 53% of the populations were gram positive, 51.5% are facultative anaerobes, 30% were strict anaerobes, and 58% were rod shaped bacteria. Supplementary data (see additional file 1) LGX818 provides a secondary comprehensive evaluation of the bacterial diversity in each of the 40 wounds.

Comments are closed.