DHEA, administered

intravitreally, protected the retina f

DHEA, administered

intravitreally, protected the retina from excitotoxicity in a dose-dependent manner. This effect was mimicked by NGF, and reversed by the NGF TrkA receptor inhibitor. The TrkA receptor is expressed in ganglion cells of rat retina. TUNEL staining and FACS analysis substantiated the neuroprotective actions of DHEA. These results demonstrate for the first time that Crenigacestat in vitro the neurosteroid DHEA, administered intravitreally, protects the retina from AMPA excitotoxicity. An NGF TrkA receptor mechanism appears to be involved in this neuroprotection. (C) 2012 Elsevier Ltd. All rights reserved.”
“Bacteria, as well as the plastid organelles of algae and higher plants, utilize proteins of the suf operon. These are involved in Fe-S cluster assembly, particularly under check details conditions of iron limitation or oxidative stress. Genetic experiments in some organisms found that the ATPase SufC is essential, though its role in Fe-S biogenesis remains unclear. To ascertain how interactions with other individual Suf proteins affect the activity of SufC we coexpressed it with either SufB or SufD from Thermotoga maritima and purified the resulting

SufBC and SufCD complexes. Analytical ultracentrifuge and multiangle lightscattering measurements showed that the SufBC complex exists in solution as the tetrameric SufB(2)C(2) species, whereas SufCD exists as an equilibrium mixture of SufCD and SufC(2)D(2). Transient kinetic studies of the complexes were made using fluorescent 2′(3′)-O-(N-methylanthraniloyl-(mant) analogues of ATP and ADP. Both SufBC and SufCD bound mantATP and mantADP much more tightly than does SufC alone. Compared to the cleavage step of the mantATPase of SufC alone, that of SufBC was accelerated 180-fold and that of SufCD only fivefold. Given that SufB and SufD have 20% sequence identity and similar predicted secondary structures, the different hydrodynamic properties and kinetic mechanisms of the two complexes are discussed.”
“The pathophysiology of secondary lymphedema remains poorly understood. To clarify

the roles of cyclooxygenase (COX)-2 in enhancement of lymphangiogenesis during secondary lymphedema, G protein-coupled receptor kinase we tested a mouse tail model and evaluated the recurrence of lymph flow. To induce lymphedema, a circumferential incision was made in the tail of anesthetized mice to sever the dermal lymphatic vessels. The maximum diameters of the tails were measured weekly. We found that the diameters of the tails around the wounds were markedly increased after surgery, and reached maximum size 2 weeks after wounding in mice without a COX-2 inhibitor, celecoxib (Celecoxib-). Expression of COX-2 in wound granulation tissues was markedly increased 1 week after surgery compared with unwounded naive control mice. In Celecoxib-, recurrence of lymphatic flow in the wound granulation tissues was detected 3 weeks after surgical treatment.

Comments are closed.