2009, 25:9545

2009, 25:9545.CrossRef 34. Chen X, Zhou Y, Liu Q, Li Z, Liu J, Zou Z: Appl Mater Interfaces. 2012, 4:3372.CrossRef 35. Shpak AP, Korduban AM, Medvedskij MM, Kanduba VO: J Electr Spectros Related Phenom. 2007, 156–158:172.CrossRef 36. Kanan SM, Tripp CP: Science. 2007, 11:19. 37. Kanan SM, Lu Z, Fox JK, Bernhardt G, Tripp CP: Langmuir. 2002, 18:1707.CrossRef 38. Davydov A: Molecular Spectroscopy of Oxide Catalyst Surfaces, 670. Chichester, England: Wiley; 2003.CrossRef 39. Lu Z, Kanan selleck inhibitor SM, Tripp CP: J Mater Chem. 2002, 12:983.CrossRef 40. Hollins P: Suf Sci Rep. 1992, 16:51.CrossRef 41. Nonaka K, Takase A, Miyakawa K: J Mater

Sci Lett. 2003, 12:274.CrossRef 42. Fang GJ, Liu ZL, Sun GC, Yao KL: Phys Status Solidi Appl Res. 2001, 184:129.CrossRef

43. Balaji S, Albert AS, Angiogenesis inhibitor Djaoued Y, Bruning R: J Raman Spectr. 2009, 40:92.CrossRef 44. Cremonesi A, Bersani D, Lottici PP, Djaoued Y, Ashrit PV: Non-Cryst Solids. 2004, 345–346:500.CrossRef 45. Cazznelli E, Vinegoni C, Mariotto G, Kuzmin A, Purans J: J Solid State Chem. 1999, 143:24.CrossRef 46. Zhuiykov S: Sens Actuators B Chem. 2012, 161:1.CrossRef 47. Zhuiykov S, Kats E, Kalantar-zadeh CP673451 purchase K, Li Y: IEEE Trans Nanotechn. 2013, 12:641.CrossRef 48. Fortunato E, Barquinha P, Martins R: Adv Mater. 2012, 24:2945.CrossRef 49. Iwasaki M, Park W: J Nanomater. 2008, 2008:169536.CrossRef 50. Phuruangrat A, Ham DJ, Thongtem S, Lee JS: Electrochem Communic. 2009, 11:1740.CrossRef Competing interests The authors declare no competing interests. Authors’

contributions S.Z. conceived the idea, designed the experiments, conducted XRD, EDX and impedance measurements and analysed the data. E.K synthesized Q2D WO3 nanoflakes, characterized them with CSFS-AFM, SEM, FTIR, Raman and electrochemical measurements and analysed the data. S.Z. and E.K organized, wrote and edited the paper. All authors contributed to the discussion and preparation of the manuscript. All authors read Loperamide and approved the final manuscript.”
“Background Metallic nanorods from physical vapor deposition (PVD) have many technological applications, including sensors, through surface-enhanced Raman spectroscopy [1–4], and as an air-tight adhesive for ambient sealing [5]. Due to their unique electrochemical properties, aluminum (Al) nanorods are attractive as electrodes in Li-ion and Al-air batteries [6–8]. Compared to Al powders that are used as the electrodes, Al nanorods grown directly onto current collectors do not require multi-step processing and are better able to accommodate cyclic strain while maintaining current-carrying contact [6, 8]. While it is feasible to grow Al nanorods using chemical vapor deposition or template electro-deposition [7, 8], PVD can offer better control of purity, alignment, and morphology [6, 9].

Comments are closed.