Phys Rev 1929,34(1):57 CrossRef 30 Daw MS, Baskes MI: Embedded-a

Phys Rev 1929,34(1):57.CrossRef 30. Daw MS, Baskes MI: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 1984,29(12):6443.CrossRef 31. Chen H, Hagiwara I, Zhang D, Huang T: Parallel molecular dynamics simulation of nanometric grinding. Trans Jpn Soc Comput Engine

Sci 2005, 7:207–213. 32. Nieh TG, Wang JG: Hall–Petch AZD0156 solubility dmso relationship in nanocrystalline Ni and Be–B alloys. Intermetallics 2005,13(3–4):377–385.CrossRef 33. Heino P, Häkkinen H, Kaski K: LY2835219 in vitro Molecular-dynamics study of mechanical properties of copper. Europhys Lett 1998,41(3):273.CrossRef 34. Oxley PLB: Mechanics of Machining. Chichester: Ellis Horwood; 1989. 35. Shi J, Liu CR: On predicting chip morphology and phase transformation in hard machining. Int J Adv Manuf Technol 2006, 27:645–654.CrossRef 36. Sreejith PS: Machining force studies on ductile machining of silicon nitride. J Mater Process Technol 2005,169(3):414–417.CrossRef 37. Lu K, Sui ML: An explanation to the abnormal Hall–Petch relation in nanocrystalline materials. Scr Metall Mater 1993,28(12):1465–1470.CrossRef 38. Schiøtz J, Jacobsen selleck chemicals KW: A maximum in the strength of nanocrystalline copper. Science 2003,301(5638):1357–1359.CrossRef 39. Koch CC: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals.

Scr Mater 2003,49(7):657–662.CrossRef 40. Mohammadabadi AS, Dehghani K: A new model for inverse Hall–Petch relation of nanocrystalline materials. J Mater Eng Perform 2008,17(5):662–666.CrossRef 41. Schiøtz J: Atomic-scale modeling of plastic deformation of nanocrystalline copper. Scr Mater 2004,51(8):837–841.CrossRef 42. Sanders PG, Eastman JA, Weertman JR: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater 1997, 10:4019.CrossRef 43. Schuh CA, Nieh TG: Hardness and abrasion resistance of nanocrystalline nickel alloys near the Hall–Petch breakdown regime. In MRS Proceedings. Volume 740. No. 1. Cambridge: Cambridge University Press; 2002. doi:10.1557/PROC-740-I1.8 44. Morris J: The influence of grain size on the mechanical properties of steel. In Proceedings of the

International Symposium on Ultrafine Grained Steels: September Thiamine-diphosphate kinase 20–22, 2001; Tokyo. Tokyo: Iron and Steel Institute of Japan; 2001:34–41. 45. Narayan J: Size and interface control of novel nanocrystalline materials using pulsed laser deposition. J Nanoparticle Res 2004,2(1):91–96. 46. Wei YJ, Anand L: Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J Mecha Phys Sol 2004,52(11):2587–2616.CrossRef 47. Van Swygenhoven H, Derlet PM: Grain-boundary sliding in nanocrystalline fcc metals. Phys Rev B 2001,64(22):224105.CrossRef 48. Schiøtz J, Di Tolla FD, Jacobsen KW: Softening of nanocrystalline metals at very small grain sizes. Nature 1998,391(6667):561–563.CrossRef 49. Fan GJ, Choo H, Liaw PK, Lavernia EJ: A model for the inverse Hall–Petch relation of nanocrystalline materials.

Comments are closed.